Rosuvastatin calcium is highly effective 3-hydroxyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor. It is widely used for the treatment of hyperlipidemia [1,2]. Several methods have been reported for the determination of rosuvastatin calcium in pharmaceutical formulations and biological samples including HPLC [3-7] and spectrophotometry [8]. There has not been reported any capillary electrophoretic method for the determination of rosuvastatin calcium in pharmaceutical preparations. In this study, capillary zone electrophoretic method has been used for the determination of rosuvastatin calcium from its pharmaceutical preparations, using fused silica capillary (i.d. 50.0 µm, total length 48.5 cm and effective length 40.0 cm). Analysis was performed after hydrodynamic injection ($P_{\text{jinj}} = 50$ mbar, $t_{\text{jinj}} = 5$ s); the separation and best peak shape was achieved by applying 25 kV voltage at 30 $^\circ$C capillary temperature. 50 mM borate buffer solution (pH 9.5) was used as background electrolyte. Detection was at 243 nm using a diode array detector. Diflunisal was used as internal standard. Under these experimental conditions the analysis takes less than 6 min. The migration times of rosuvastatin calcium and diflunisal were 3.20 ± 0.01 and 4.20 ± 0.02, respectively. The linearity range of rosuvastatin calcium was between 3.00 - 200.00 µg mL$^{-1}$. The limit of detection was 1.00 µg mL$^{-1}$ and the limit of quantification was 3.00 µg mL$^{-1}$ for the developed method. This capillary zone electrophoresis method was validated in terms of sensitivity, selectivity, precision, accuracy, robustness and ruggedness and successfully applied for the routine analysis of rosuvastatin calcium in pharmaceutical preparations.