The Effect of CaNa2-EDTA on Zinc, Carbohydrate Metabolism and Glutamic Oxalic, Glutamic Pyruvic Aminotransferases (GOT, GPT) and Alkaline Phosphatase Activities in Experimental Diabetes

Zine Kechrid and Samir Djemli

Department of Biochemistry, Faculty of Sciences, University of Annaba, PO BOX 12, EL-Hadjar, Annaba 23000, Annaba, Algeria.
kechridzine@yahoo.fr

EDTA is used as an anticoagulant in blood used for laboratory studies. The FDA also approved intravenous EDTA treatment as possibly effective in occlusive vascular disorders, it is used for the treatment of pathologic condition to which calcium tissue deposits or hypercalcaemia, EDTA is also utilised for the treatment and prevention of arteriosclerosis and other chronic degenerative disease (1, 2). Moreover it was found beneficial uses of oral EDTA in cardiovascular diseases (3). It has a negative effect. In other words some reports indicated that use of EDTA results in depletion of certain elements such as zinc, which is in general an important element for the metabolism (4). Therefore, this research was carried out to investigate the effect of CaNa2-EDTA and experimental diabetes (IDDM) on zinc and carbohydrate metabolism and the activities of GOT, GPT and alkaline phosphates. Forty male wealing normal albino (Wistar) rats of 8 weeks of age were fed with a basal diet. Twenty rats (n = 20) were then intraperitoneally injected with alloxan to induce diabetes. Then after one week ten rats from each group (n = 20) were administrated intraperitoneally with CaNa2-EDTA for further three weeks. Body weight gain and food intake were recorded regularly. On day 21 after an over night fasting, animals were killed and blood glucose, serum zinc, femur and pancreatic zinc concentrations, liver glycogen contents, serum glutamic oxalic transaminase (GOT), serum glutamic pyruvic transaminase (GPT) and serum alkaline phosphatase were determined. Diabetic rats given CaNa2-EDTA or not had a low body weight gain, high total food intake (hyperphagia), low liver glycogen contents and low serum and pancreatic zinc concentrations compared to normal ones. The administration of CaNa2-EDTA significantly altered the body weight gain, food intake and serum zinc concentration of either diabetic or non-diabetic animals. Both diabetic and non-diabetic rats given CaNa2-EDTA had higher blood glucose than their control counterparts. Liver glycogen was also found to be higher in CaNa2-EDTA non-diabetic rats than their controls. In alloxan diabetes, serum GOT and GPT were significantly increased compared to normal rats, while the level of serum alkaline phosphatase was decreased. The administration of CaNa2-EDTA led to increasing of GOT and GPT, and decreasing serum alkaline phosphatase. To conclude, the present study demonstrates that CaNa2-EDTA had an effect on body weight gain, glucose utilization and serum zinc. In addition CaNa2-EDTA has affected the activities of GOT, GPT and alkaline phosphatase. Therefore it was appeared that CaNa2-EDTA resulted in the development of severe diabetes.

REFERENCES