Study of a Solution Mixture of Cd$^{++}$, Zn$^{++}$ and Cu$^{++}$ Cations Using a Combined Electrodialysis and Ions Exchange Technique

Abdelaziz Smara$^a$, Mohamed Fouzi Ghoraba$^a$, Rachid Delimi$^a$, Eric Chainet$^b$, Jacqueline Sandeaux$^c$

a) LTEVDI, Université de Annaba 23000, BP12, Algérie.
b) LEPMI/ENSEEG, Domaine universitaire, BP75, 38402 Saint Martin d’Hères, France.
c) IEM, UMR N°5635, Place Eugène Bataillon - Case Courrier 047, 34095 Montpellier France.
smara_abdelaziz@yahoo.fr

The electroextraction is a process combining the conventional electrodialysis and ion exchange resin (1,2,3). This method uses a cell which consists of three compartments in which the cation-exchange resins are placed in the central compartment. In the central compartment, the polluted effluent flows continuously as single pass system. Under an applied current, the metal cations are fixed by the ion-exchange resins, substituted by protons provided by the acidic solution contained in the regeneration compartment and transferred into the receiver compartment where they are concentrated. The process feasibility is tested using low concentration solution of Zn$^{++}$, Cd$^{++}$ and Cu$^{++}$ ions. Solutions containing only one cation and mixtures of the cations are used under various experimental conditions. The results of elimination and reconcentration ratios of the divalent cations were analysed in terms of current density, flow rate, salt concentration and nature of regenerating acid solutions. The competition between the electroextraction of the metallic cations Zn$^{++}$, Cd$^{++}$ and Cu$^{++}$ was investigated for different concentration mixtures (either with equal concentrations of metallic cations or with one predominant metallic cation) and pre-established experimental conditions. The electromutation results were therefore analyzed with respect to the cations transfer into the receiver compartment. This study has demonstrated the possibility to treat by electromutation a mixture of metallic cations with an efficient removal ($\geq 97\%$).

REFERENCES