Synthesis and Antimicrobial Activity of New 5-(3,4-Dichlorophenyl)-2-alkylthio-1,3,4-oxadiazoles and Their Triazolo[3,4-b][1,3,4]thiadiazine Derivatives

Meric Köksala, Erine Şümüra, İrem Özkana, Mine Yarıma, Ürün Güneyb, Dilek Demir Erola

aYeditepe University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Kayısköy, Istanbul, TURKEY
bYeditepe University, Faculty of Pharmacy, Department of Microbiology, Kayısköy, Istanbul, TURKEY

merickoksal@yeditepe.edu.tr

The treatment of infectious diseases still remains an important and challenging problem because of combination of the factors including emerging infectious diseases and the increasing number of multi-drug resistant pathogens. Significant increases in resistant bacterial and fungal infections prompt researchers to find novel compounds having new and/or effective mechanisms. Among them, 1,3,4-oxadiazole-2-thiones and their fused ring derivatives exhibit broad antimicrobial activity [1-3].

With the aim to obtain new antibacterial agents, we synthesized a series of 5-(3,4-dichlorophenyl)-2-alkylthio-1,3,4-oxadiazole and their triazole[3,4-b][1,3,4]thiadiazine derivatives. The synthesis of 5-(3,4-dichlorophenyl)-2-alkylthio-1,3,4-oxadiazoles was carried out by the reaction of 5(3,4-dichlorophenyl)-1,3,4-oxadiazole-2-thione with substituted phenacyl bromides, as a second step, reactions of these compounds with hydrazine hydrate in glacial acetic acid led to corresponding triazole[3,4-b][1,3,4]thiadiazines.

\[
\text{Scheme- Synthetic pathway of the compounds}
\]

Purity and identity of the synthesized compounds were checked and the proposed structures were confirmed by the results of IR and 1H-NMR spectroscopic measurements.

All the new structures were tested for their antimicrobial performance against a series of bacteria and fungus by microdilution method. Minimal inhibitory concentration (MIC) were shown that some of the compounds exhibited potent antimicrobial activity.