FOR THE MATTER CONCERNING USING OF POLARIMETRY METHOD IN
PHYSICAL-CHEMICAL ANALYSIS OF BINARY AND MULTICOMPONENT
SYSTEMS

Yaşar Kh. Shakhverdiyev
Baku State University

Using of polarimetry method in physical-chemical research of binary and multicomponent systems contains optically active components, requests optically rotation isotherm design for ideal system for further comparison with experimental isotherm. In case of conformational and tautomeral conversion absence, deviation of rotation quantity from additivity may serve some quantitative characteristic of influence of action of solvent on optical activity in binary or component interaction in kwazibinary and multicomponent systems. Quantity (α^E) as well as characteristic of deviation of angle of rotation from additivity (curves $\alpha^E = f(x)$) may do much good for interpretation of experimental datas and systematization of correspondent isotherms. As follows from abovementioned take place importance of correct and sound calculation of deviation of rotation quantity from additivity.

We have defined ratio of volume additivity of quantity of angle rotation of the plane of polarization which was sound by large experimental material.

$$\alpha = \sum \alpha_i \cdot \varphi_i$$

By use of volume additivity of quantity of angle rotation of solutions we observed ratio for calculation of heat rotation of multicomponent systems, especially, for distil fraction of oil.

$$[\alpha] = \frac{\sum \alpha_i \cdot P_i}{\sum P_i}$$

where α_i, ρ_i, P_i (accordingly) –quantity of angle of rotation; density; out mass i-fraction.

On the basis of optically active oil research one of the important questions is the question of nature of oil’s optically active components and determination of different types of hydrocarbons input to total rotation. We also observed ratio for determination of heat rotation for aromatic hydrocarbons of oil fractions.