ELECTROCHEMICAL AND OPTICAL PROPERTIES OF N-SUBSTITUTED POLY(3,4-PROPYLENEDIOXYPYROLE)S

Güresel SÖNMEZ1, Philippe SCHOTTLAND2, Kyukwan ZONG2, A. Sezai SARAÇ1, John R. REYNOLDS2

1Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry Maslak, 80626, Istanbul, TURKEY.
2Department of Chemistry, Center for Macromolecular Science and Engineering, University of Florida, Gainesville, FL. 32611, USA.

A series of N-substituted poly(3,4-propylenedioxy pyrole)s (PProDOP)s was synthesized and their electrochemical and electrochromic properties are reported. The N-substitution modifies the band gap of the polymer thus yielding new electrochromic properties compared to non-substituted PProDOP. Multi-color electrochromism can be achieved with these polymers giving a new set of colors including purple, green, brown and blue. As a result of the substitution, the $\pi-\pi^*$ transition in the polymer is shifted to the UV range thus leading to an optically transparent neutral polymer which becomes colored upon oxidation. For instance, films of N-Glycol PProDOP switch between an almost 100% transmissive colorless neutral state to blue upon doping. Spectroelectrochemistry showed that the absorbance of the $\pi-\pi^*$ transition in the neutral state is blue shifted compared to regular PProDOP. In the case of poly(N-glycol ProDOP) (N-Gly PProDOP), this transition displays a maximum at 306 nm thus giving an almost colorless highly transparent neutral polymer with a relative luminance of almost 100%. Another interesting feature of the new N-substituted PProDOPs is their electrochemistry where almost 'ideal' behaviors are obtained with N-Propyl PProDOP (N-Pr PProDOP), N-Octyl PProDOP (N-Oct PProDOP) and N-Glycol PProDOP (N-Gly PProDOP). For these polymers which show an $E_{1/2}$ less than mV/s less than -0.1 V vs Fc/FST, the ratio between anodic and cathodic peak currents at a scan rate of 20 mV/s is almost 1-0 and the difference between anodic and cathodic peak potentials (AE_{p}) is less than 8mV. In addition, these polymers have shown interesting electrochromic properties in the visible.