FLUORESCENCE EMISSION STUDIES ON 1-PHENYL-4-AROYL(AND ACYL)-1H-1,2,3-TRIAZOLES

Celil TIMURa, Siddik İÇLİa, A. Stephen ASTLEYa, Olcay ANACb, Özkan SEZERb and Kadir DABAKb

a Department of Chemistry, Faculty of Science, Ege University, 35100 Bornova, Izmir- TURKEY

b Department of Chemistry, Faculty of Science, Istanbul Technical University, 80626 Maslak, Istanbul, TURKEY

Triazole ring systems have been immensely studied for their biological activities as antibacterial agents. However, little is known about their photophysical properties. We have investigated the emission characteristics of synthesized 1-phenyl-4-aryl(acyl)-1H-1,2,3-triazoles in order to investigate the effect of varying arylic groups on fluorescence emission.

Fluorescence emission from 378 nm excitation yielded fluorescence quantum yields, Q_f, radiative lifetimes, τ_0, fluorescence lifetimes, τ_f, and fluorescence rate constants, k_f values in the range of 0.001-0.016, 17-132 ns, 0.02-1.29 ns and (0.9-18.2)\times105 sec$^{-1}$, respectively, for seven 4-aryl(acyl) derivatives 1-phenyl-1,2,3-triazoles in chloroform solutions. Mesomeric effects are detected on fluorescence emission parameters. The strong π-electron donor of 5,10-dihydrocarbazolo[3,4-c]carbazole is found to quench fluorescence emission of triazoles and gives quenching rates of 7.7\times1010 - 2.8\times1012 M$^{-1}$s$^{-1}$. The high rates of fluorescence quenching, k_q, are attributed to a ground state complexation between 1,2,3-triazoles and the strong π-electron donor carbazolocarbazole. Mesomeric effects are seen to increase the fluorescence quenching rates. 1,2,3-Triazoles have shown intense solvatochromic absorbance shifts in n-hexane, chloroform and methanol. Absorbance shifts reaching 44 nm were observed from polar to protic solvents.
The strong \(\pi \)-electron donor 5,10-dihydrocarbazolo[3,4-c]carbazole quenches fluorescence emission of triazoles at \(10^{-4} \) molar concentrations. The singlet energies of triazoles (75.7 kcal/mol) and carbazolocarbazole molecule (76.5 kcal/mol) are similar.

The rates of fluorescence quenching, \(k_q \), calculated from the Stern-Volmer plot (Figure) have values of \(7.7 \times 10^{10} \) - \(2.8 \times 10^{12} \) M\(^{-1}\)s\(^{-1}\). Overall high quenching rates, \(>10^{10} \) M\(^{-1}\)s\(^{-1}\), may be attributed to fluorescence quenching in ground state complexation between 1,2,3-triazoles and strong \(\pi \)-electron donor of carbazolocarbazole\(^{2,3}\).

![Stern-Volmer plot](image)

Fig. Stern-Volmer plot of fluorescence quenching of dihydrocarbazolocarbazole in presence of increasing 1-phenyl-4-(p-chlorophenyl)-1H-1,2,3-triazole, 1, concentrations (0-65.1)\(\times 10^{-6} \) m, in chloroform solutions.

References

