SYNTHESIS, STRUCTURE AND REDOX PROPERTIES
OF TRANSITION METAL COMPLEXES WITH 2-HYDROXY
BENZYLAMINES CONTAINING HINDERED PHENOL

Veli KASUMOV

Department of Chemistry, Faculty of Arts and Sciences, Harran University, Ş.URFA

In this report the results of synthesis and the studies of the structure of \(M(L_x)2 \) (\(M=\text{Ni(II), Co(II), Pd(II), VO(II), Zn(II)} \)) complexes and their free radical complexes which are formed by interaction of \(M(L_x)2 \) with \(\text{PbO}_2 \) at 300 K, in the absence of \(\text{O}_2 \) and in \(\text{CHCl}_3 / \text{toluene solutions} \) are presented. The structures of complexes are characterized by ESR, IR (for all complexes \(\nu(\text{OH}) \sim 3640 \text{cm}^{-1}, \nu(\text{NH}) \sim 3340-3380 \text{ cm}^{-1} \)), electronic spectra [485-490, 625-665, 790-890 nm for \(\text{VO}(L_x)2 \), 500-610 nm for \(\text{Co}(L_x)2 \), 515-520, 600-790 nm for \(\text{Ni}(L_x)2 \), 370-385, 454-485, 515-526 nm for \(\text{Pd}(L_x)2 \)] and magnetic moments [-1.73-1.75 \(\mu_B \) for \(\text{VO}(L_x)2 \), 4.48-4.56 \(\mu_B \) for \(\text{Co}(L_x)2 \), 3.32-3.85 \(\mu_B \) for \(\text{Ni}(L_x)2 \)] that are characteristic for tetrahedral geometry around chelate rings.

\[x = H, \text{Br}, (L_x)2 \]

It has been established that interactions of these compounds with \(\text{PbO}_2 \) in the solutions of \(\text{CHCl}_3 \) and in the absence of \(\text{O}_2 \) leads to the formation of stable radical particles. Upon the oxidation of \(\text{Ni}(L_x)2, \text{VO}(L_x)2 \) and \(\text{Zn}(L_x)2 \) complexes, in the ESR spectra well-resolved high intensive signal consisting of 9 superhyperfine lines with intensity ratio of 1:4:7:8:8:7:4:1 (\(g \sim 2.003-2.004 \), \(A^N \sim 1.7-2.24 \text{ G, } A^H \sim 0.85-1.12 \text{ G} \)) were observed. By the oxidation of \(\text{Pd}(L_x)2 \), radical intermediates were observed in which ESR spectra with the parameters \(g=2.0044-2.0065, A^H \sim 1.229-1.425 \text{ G, } A^N \sim 2.45-2.85 \text{ G} \) and the intensity ratio of 1:3:5:5:5:3:1. At the same conditions upon oxidation of \(\text{Co}(L_1)2 \), the ESR spectrum which consists of superpositions of low intensive octet with center at \(g=2.01 \), hyperfine coupling constant \(-6.14 \text{ G} \) and badly resolved high intensive signal with \(g=2.0035, A^H \sim 1.11 \text{ G} \) has been observed. For \(\text{Co}(L_2)2 \) spectrum which consists of superpositions of radical signal (\(g=2.0054, A^H=1.18 \text{ G} \)) and anisotropic spectrum from radical coordinated complex of \(\text{Co(III)} \) with the parameters \(g_{x,y}=2.015, g_z=1.989, A_{x,y}=4.66 \text{ G, } A_z=10 \text{ G} \) were observed.

This work supported under Grant TBAG-1424 from TÜBİTAK.